Industrial Utility Efficiency    

Technology

Lubricants play a critical role in the safe, efficient, and a reliable operation of oil-flooded rotary screw air compressors. There are many factors to contemplate during the selection process, such as inlet air quality, temperature, and cost. One key factor often not given enough consideration is how the selected product will affect the maintenance cycle, and how these costs can be put into perspective. Presented here a review of available options, and how base stock selection can affect the maintenance of an air compressor.

Air Compressors

Properly sizing a compressed air system can help determine if your facility has enough air to adequately supply your production equipment. Designing a cost effective system that minimizes any interruptions to productivity requires thoughtful planning and design. Typically, the desired outcomes of such a system focus on stable pressure and efficient operation, though it is important to note that each of these elements requires a unique solution. This article will provide guidance in proper selection considerations and suggest when a centrifugal air compressor may be ideal for your needs.

Air Treatment

Air compressors can produce a lot of water. Humidity in ambient air, once compressed, results in much of this water falling out, which we know as condensate. On a warm and humid summer day with inlet air temperatures of 80 oF, a 75-horsepower (hp) air compressor running fully loaded can produce over 25 gallons of condensate in just one eight-hour shift, with another five gallons being produced once the compressed air is sent through a dryer. The compression process allows for the air, water vapor, and lubricating fluids to mix. Once the condensate leaves the system, trace amounts of lubricant travel with it. This condensate should be processed through an oil-water separator before being discharged to groundwater or wastewater treatment plants.

Blowers

The plant upgrades, in combination with a progressive management strategy, allows the plant to consume less energy and reduce its reliance on outside contractors for biosolids removal, resulting in total operational savings of approximately $60,000 per year.  The plant is also positioned to efficiently manage the area’s wastewater for decades to come.

Compressor Controls

Companies will experience periods of increased production, as well as periods of slower or stopped production. It’s the nature of being in business. Understanding the implications of these business shifts for compressed-air installations (the powerhouse behind a facility’s production) is key for ensuring that air compressors remain functional and efficient. Here are guidelines to ensure your facility’s compressed-air system operates at top performance, no matter the speed of production.

Instrumentation

High accuracy of multiple measured parameters is critical for the development of a trusted compressed air system baseline audit. The same is true for follow-on performance validation after system improvements have been implemented. The use of data acquisition systems using Modbus-interfaced transducers can aid auditors in achieving a thorough and highly accurate system performance assessment.

Pneumatics

In this article, we discuss problems associated with static electricity in industrial manufacturing operations and how to effectively address them. At the atomic level, materials have a balance of positively charged protons in the nucleus and negatively charged electrons in the shell. Balance requires the same number of each.  A static charge occurs when that balance shifts due to the loss or gain of one or more electrons from the atom or molecule. The primary mechanism for this loss or gain, among several possibilities, is friction.

Vacuum

It’s one thing to move materials during the production process, but when it’s a finished product on the packaging line, choosing the right material handling system is essential. Getting it wrong results in squandered production time when product loss occurs, and wasted raw materials.

Cooling Systems

As a result of compressed air awareness training and a focus on energy management, two facilities in different parts of the world have reduced their compressed air demand substantially by removing vortex style cabinet coolers from some of their electrical panels and reworking the cooling systems.  These facilities were previously unaware of the high cost of compressed air and how much could be saved if other methods of cooling were used. This article describes some of their efforts in demand reduction.
Varnish is a leading cause of airend failure in oil-flooded/injected rotary-screw air compressors. The purpose of this article is not to cover every scenario conducive to varnish formation, but to point out that many factors need to be considered when it occurs, and methods are available for its detection. Ultimately, it’s up to both the oil manufacturer and maintenance professional to ensure the oil used is up to the task of resisting varnish and maximizing air compressor performance and life.   
In an ever-evolving world of regulations, requirements, and legal ramifications, it can be all too easy to want to cover all the bases by adding a wide range of industry codes and standards to any project being put out for bid. Many assume that if the purchased equipment meets all the requirements of every developed code and standard then surely it will be a reliable and safe machine to operate with the best performance and energy efficiency. However, many of these codes and standards are developed with a tremendously broad range of machinery and equipment in mind and they may not always fit well with the specific project being developed. Compliance to these codes and standards may require very costly modifications to a manufacturer’s standard product for little to no real benefit. 
A Tier 1 automotive supplier was concerned its compressed air system was not operating as efficiently as it could be. The situation called for a site visit and metering and evaluation of the company’s air compressors to generate a representative data sample that accurately captured the compressed air needs during typical production and non-production periods.
When you take care of your air compressor, it will continue to take care of you. Following the recommended preventive maintenance procedures as outlined by the manufacturer will extend the life of your air compressor, save energy costs and reduce the risk of unexpected downtime. Here’s what facility managers should know about air compressor preventive maintenance — and when to call the experts.
There are times when rotary screw air compressors must operate in high ambient temperatures, leaving questions about the impact on these vital machines. What follows is an overview of what’s possible in these conditions, along with advice for ensuring the optimal performance of these air compressors in hot ambient conditions. Although all air compressors compress air, there is a difference in how centrifugal, oil flooded rotary screw, oil free rotary screw, piston and scroll machines compress air. Because this article focuses on rotary screw air compressors, it’s important to know the difference between oil free and oil flooded air compressors. This can be understood in part by looking at the actual air compressor component, which is often referred to the “airend”.  
Here’s a review of changes taking place with the continued evolution of remote monitoring of air compressor systems and how the technology stands to improve compressed air maintenance –while adding to the bottom line.
Your industrial compressed air and gas system constitutes a major investment and a significant contributor to operating efficiently and productively. Keeping your air compressor in peak condition should be high on your list of maintenance activities. Fortunately, these industrial workhorses do not require a lot of costly or time-consuming resources to keep performing year after year. Still, performing a few routine checks, tests, cleanings, and adjustments will go a long way toward keeping your air and gas compressors in fine condition, generating a host of benefits.
Often when you mention heat of compression the first thought generally relates to HOC desiccant dryers, which are also an under-applied opportunity for heat recovery. However, there are many other heat of compression recoverable energy savings opportunities in all compressed air and gas systems. This article reviews many opportunities in energy heat recovery and provides answer to commonly asked question.
Air compressors need to be matched to load effectively and efficiently. If the air compressors’ range of variation can’t be matched to the system variation, instability and/or inefficiency can result. This article discusses the problem when it isn’t matched, which is called “control gap” and what to do to avoid it.
Have you ever wondered how to stay “in control” of an engineering organization with a fixed staff and a varying workload, where the engineers all have a mind of their own? “Herding cats” is what they call it.  Of course, that’s normal, right? Well, controlling multiple centrifugal air compressors is pretty close to that model, which can lead to a condition known as “control gap.”  This article discusses the reasons for control gap with centrifugal air compressors and solutions to help avoid it.