Industrial Utility Efficiency    

Air Treatment

Long gone are the days when cost and performance could be the only concern for companies manufacturing refrigerated compressed air dryers using refrigerant compressors. In 2019, accelerated governmental (Europe) regulations and a global concern for sustainability have brought new considerations to the table. What is the Global Warming Potential (GWP) of the refrigerants used in dryers and what is their environmental impact?
Brewing is normally broken down into four stages-malting, mashing, boiling and fermenting. The complex chemical processes begin with a few simple ingredients - hops, grain, yeast and water. Recently there have been technological advancements to safeguard that these steps are attained accurately, efficiently and with cost-savings. One particular improvement is the use of nitrogen during the brewing process. The addition of an onsite nitrogen generator allows brewers to reduce their nitrogen costs, eliminate downtime, and reduce safety risks related to bulk gas cylinder delivery and changeouts.
Introduced in the 1960s and operated successfully worldwide, the Heat of Compression (HOC) Desiccant Dryer has been a viable and successful compressed air drying technology for over 50 years.  In our ongoing series on missed-demand opportunities, we’ll discuss basic operating parameters of HOC dryers and shed light on common misperceptions associated with the technology.
Experienced auditors become wary when they see desiccant dryers installed in customers’ plants. These dryers are required when a plant needs instrument-quality compressed air, or when compressed air piping is exposed to freezing temperatures. However, while desiccant dryers can gain this level of quality, the energy cost of stepping up from a dewpoint of 35 oF to a level of -40 oF increases quite considerably. To attempt to reduce the energy costs of drying to these low levels, heated blower desiccant styles may be used. This article describes three common desiccant dryer types, as well as some experiences, good and bad, with heated blower types.
Gaseous nitrogen is used in a variety of systems and processes in the food manufacturing and packaging industries. Often regarded as the industry standard for non-chemical preservation, nitrogen is an inexpensive, readily available option. Suited for a variety of uses, Nitrogen needs to be monitored for purity and potential contaminants. Depending on the type of use, the distribution channel, and the required purity levels, different testing plans should be implemented to ensure safety.
Factory lasers use nitrogen right at the cutting point on the metal because the high temperatures used in the process can often cause oxidation. When oxidation occurs, the metal pieces being cut can be damaged, as can the tooling creating the cut. Structural damage or inaccurate cuts can make parts weak and render them useless. The use of nitrogen at the point of contact from laser to metal removes oxygen from the cutting area and helps cool the die as it cuts, thus preventing oxidation. This prevention improves the quality of the final products, produces less scrap metal and cuts back on the reworking of pieces.
The 2018 AICD Annual Meeting and Exhibition was held May 20-22 at the Hyatt Hill Country Resort in San Antonio, Texas.  The membership of the Association of Independent Compressor Distributors came together under the theme of “Roundin’ up New Business.”  “AICD membership has doubled over the past three years,” said AICD President Phil Kruger (Harris Equipment). “After selling out exhibit space in 2018, we believe our direction focused on serving the needs equally, of both vendors and members at our conference, is working.”
This article will focus on ISO8573-7 normative test methods and analysis for viable microbiological contaminants and how it can be fundamentally utilized in compressed air microbial monitoring plans. The quality of the compressed air must be monitored periodically to fulfill national and international standards. ISO 8573 is an available standard addressing compressed air quality. It consists of nine parts that address purity classes, specifications, and procedures. ISO 8573-7:2003, can be utilized across all industries’ compressed air microbial monitoring plans. It contains both informative and normative procedures but lacks any tested compressed air microbial specifications regarding colony enumeration limits for microbial plate counts.
Compressed air contains contaminants such as dirt, water and oil which must be removed before use. ISO8573.1 specifies air quality classes for these contaminants. Humidity is expressed in terms of Pressure Dew Point (PDP). PDP is the temperature at which air is fully saturated with moisture, when the air temperature falls below this point further condensation will occur.
Compressed air dryers need to get the ball handed to them on the 25 yard-line by a compressor providing low enough temperature, and high enough pressure for the dryer to take it to the design dew point. If not, the dryer is not able to work properly. Once the dryer gets the right moisture level, it needs to operate properly. Heat exchangers, drains, switching valves, etc., all have to work with the proper control sequence to provide reliable dew point to the plant.
ANSI /ISA–7.0.0–1996 is the globally-recognized quality standard for instrument air as defined by the Instrument Society of America. In this article, we’ll go through the Standard’s four elements of instrument air quality for use in pneumatic instruments.