Industrial Utility Efficiency    

Pneumatics

The advent of manifold-mounted, plug-in pneumatic valves has been a boon for machine builders. It allows them to mount complete valve packages in a safe and secure location on a machine. Using a D-sub connector, serial interface module, or similar single-point wiring system, all of the electrical control outputs can feed into one location on the manifold, greatly simplifying the wiring.
Reverse pulse type dust collectors often represent a challenge to compressed air energy efficiency, and sometimes throw a wrench into the works by causing huge air pressure fluctuations, high transient flows and just plain large leaks. This article discusses this type of dust collector, often installed in food processing plants, and gives some real-life examples of problematic installations. Some suggested measures are mentioned to ensure your dust collectors keep running in a trouble-free manner.
For more than 20 years, Hungarian-based Doroti Pack Ltd. has specialized in the production and servicing of state-of-the-art packaging machines. Their focus is on developing, manufacturing, producing and selling premium-quality packaging equipment, including their line of DorPack thermoforming machines which are often used for food products such as fresh meat, fish, dairy products, bakery ware, confectionery and ready-cooked foods. Dorati Pack chose to incorporate Aventics pneumatic components in latest thermoforming machine for optimal productivity and machine longevity.
Machines for filling milk or juice must often work around the clock. Given the critical importance of uptime, Elopak opted for Aventics food-compliant pneumatics when developing its E-PS120A - the first fully aseptic filling machine for gable top packaging. With an output of up to 12,000 cartons per hour, disruptions and downtime are not welcome with the aseptic filling machine.
Whenever we start a compressed-air energy survey there are always two key topics plant personnel feel are paramount – leaks and reducing pressure. In this installment of our series on missed demand-side opportunities we’ll address the importance of compressed air system pressure.
A flour based frozen foods manufacturer orders a compressed air efficiency audit. The audit establishes the cost of compressed air at $0.27/1000 cubic feet. The study finds the 116 pulse jet dust collectors represent the greatest opportunity for compressed air demand reduction and energy cost savings. A dust collector optimization study/service is suggested and the customer agrees to proceed. In this facility, pulse jet dust collectors are used to filter dust from raw materials entering the plant, for conveying and mixing of ingredients, and for the final packaged finished products leaving the plant.  
In the last ten years, the design of pneumatic systems has changed dramatically, mainly due to developments in the technologies that create them. Pneumatic manufacturers’ online tools for sizing components have evolved, the fieldbus systems are ever-changing, component designs are constantly improving, and network devices such as the Industrial Internet of Things (IIoT) have reshaped the industry. All these advances play a large role in optimizing the efficiency of pneumatic systems, but the age-old practice of routine maintenance must not be overlooked. This article will focus on proper air compressor sizing, proper pneumatic component sizing and predictable preventative maintenance. 
There are three essential ways to transmit power in heavy industry today: Mechanical, Electrical and Fluid Power. Under the umbrella of fluid power, you have hydraulics and pneumatics as the two fundamental technologies. Both use a form of fluid – hydraulics as a liquid and pneumatics as a gas, to transmit power from one location to another.
Figuring out the energy savings for the switch from pneumatic to electric tools requires an estimate of energy use for each case. The effect of replacing a few tools in a large compressed air system may be too small to detect using power monitoring on the air compressors. However, it is still a good practice, and when part of a larger program to reduce air consumption, the combined efforts will amount to something measurable. Another positive aspect may be that reduced compressed air use frees up needed air compressor capacity.
The design of wastewater treatment plants is changing, and it has something to do with LEGO® bricks. More specifically, it has to do with how large and complex LEGO structures are built. If you follow the instructions carefully, you build module after module, eventually piecing them together to create a fully functional and cohesive unit.
Productivity is more reliable when equipment can be monitored to detect incipient failures and take corrective action before the plant goes down. But many devices, such as analog control valves, pneumatic valve terminals and field sensors, often do not offer diagnostic feedback, or it is not being used. This white paper describes how this problem is being addressed, and includes an example of pneumatic valve terminals that can monitor, among other things, open load or coil currents at the specific valve and pressure inside the valve terminal.